skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wen, Ethan_Chi Ho"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nitrogen core-doping of graphene nanoribbons (GNRs) allows trigonal planar carbon atoms along the backbone of GNRs to be substituted by higher-valency nitrogen atoms. The excess valence electrons are injected into the π-orbital system of the GNR, thereby changing not only its electronic occupation but also its topological properties. We have observed this topological change by synthesizing dilute nitrogen core-doped armchair GNRs with a width of five atoms (N2-5-AGNRs). The incorporation of pairs of trigonal planar nitrogen atoms results in the emergence of topological boundary states at the interface between doped and undoped segments of the GNR. These topological boundary states are offset in energy by approximately ΔE = 300 meV relative to the topological end states at the termini of finite 5-AGNRs. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal that for finite GNRs the two types of topological states can interact through a linear combination of orbitals, resulting in a pair of asymmetric hybridized states. This behavior is captured by an effective Hamiltonian of nondegenerate diatomic molecules, where the analogous interatomic hybridization interaction strength is tuned by the distance between GNR topological modes. 
    more » « less
  2. Metallic graphene nanoribbons (GNRs) represent a critical component in the toolbox of low-dimensional functional materials technolo-gy serving as 1D interconnects capable of both electronic and quantum information transport. The structural constraints imposed by on-surface bottom-up GNR synthesis protocols along with the limited control over orientation and sequence of asymmetric monomer building blocks during the radical step-growth polymerization has plagued the design and assembly of metallic GNRs. Here we report the regioregular synthesis of GNRs hosting robust metallic states by embedding a symmetric zero-mode superlattice along the backbone of a GNR. Tight-binding electronic structure models predict a strong nearest-neighbor electron hopping interaction between adjacent zero-mode states resulting in a dispersive metallic band. First principles DFT-LDA calculations confirm this prediction and the robust, metallic zero-mode band of olympicene GNRs (oGNRs) is experimentally corroborated by scanning tunneling spectroscopy. 
    more » « less